Нахождение общих геометрических параметров для ряда изомеров

\(A^-B^-\)

Mono

Di

Tri

\(14:0\)

\(\Delta9-14:1 \atop \omega5-14:1\)

\(\Delta9,12-14:2 \atop \omega2,5-14:2\)

-

\(15:0\)

\(\Delta9-15:1 \atop \omega6-15:1\)

-

-

\(16:0\)

\(\Delta6-16:1 \atop \omega10-16:1\)

\(\Delta6,9-16:2 \atop \omega7,10-16:2\)

-

\(\Delta7-16:1 \atop \omega9-16:1\)

\(\Delta7,10-16:2 \atop \omega6,9-16:2\)

?

\(\Delta8-16:1 \atop \omega8-16:1\)

\(\Delta8,10-16:2 \atop \omega6,8-16:2\)

-

\(\Delta9-16:1 \atop \omega7-16:1\)

\(\Delta9,12-16:2 \atop \omega4,7-16:2\)

\(\Delta9,12,15-16:3\)

\(\Delta9,13-16:2 \atop \omega3,7-16:2\)

-

\(\Delta9,14-16:2 \atop \omega2,7-16:2\)

-

\(\Delta10-16:1 \atop \omega6-16:1\)

-

-

\(\Delta11-16:1 \atop \omega5-16:1\)

-

-

\(\Delta14-16:1 \atop \omega2-16:1\)

-

-

\(17:0\)

\(\Delta9-17:1 \atop \omega8-17:1\)

\(\Delta9,12-17:2 \atop \omega5,8-17:2\)

\(\Delta9,12,15-17:3\)

\(\Delta10-17:1 \atop \omega7-17:1\)

-

-

\(18:0\)

\(\Delta9-18:1 \atop \omega9-18:1\)

\(\Delta5,9-18:2 \atop \omega9,13-18:2\)

?

\(\Delta8,9-18:2 \atop \omega9,10-18:2\)

-

\(\Delta9,10-18:2 \atop \omega8,9-18:2\)

-

\(\Delta9,11-18:2 \atop \omega7,9-18:2\)

?

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

\(\Delta9,12,15-18:3\)

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

\(\Delta9,13,16-18:3\)

\(\Delta9,14-18:2 \atop \omega4,9-18:2\)

-

\(\Delta9,15-18:2 \atop \omega3,9-18:2\)

-

\(\Delta9,17-18:2 \atop \omega1,9-18:2\)

-

\(\Delta14,17-18:2 \atop \omega1,4-18:2\)

-

\(\Delta11-18:1 \atop \omega7-18:1\)

-

-

\(19:0\)

\(\Delta10-19:1 \atop \omega9-19:1\)

\(\Delta10,13-19:2 \atop \omega6,9-19:2\)

-

\(20:0\)

\(\Delta11-20:1 \atop \omega9-20:1\)

\(\Delta11,14-20:2 \atop \omega6,9-20:2\)

-

SMILES

Di
Таблица 1. Di

ID

SMILES

SVG

\(\Delta9,12-14:2 \atop \omega2,5-14:2\)

C/C=C\C/C=C\CCCCCCCC(=O)O

2꞉14 Δ9,12ω2,5

\(\Delta6,9-16:2 \atop \omega7,10-16:2\)

CCCCCC/C=C\C/C=C\CCCCC(=O)O

2꞉16 Δ6,9ω7,10

\(\Delta7,10-16:2 \atop \omega6,9-16:2\)

CCCCC/C=C\C/C=C\CCCCCC(=O)O

2꞉16 Δ7,10ω6,9

\(\Delta8,10-16:2 \atop \omega6,8-16:2\)

CCCCC/C=C\C=C/CCCCCCC(=O)O

2꞉16 Δ8,10ω6,8

\(\Delta9,12-16:2 \atop \omega4,7-16:2\)

CCC/C=C\C/C=C\CCCCCCCC(=O)O

2꞉16 Δ9,12ω4,7

\(\Delta9,13-16:2 \atop \omega3,7-16:2\)

CC/C=C\CC/C=C\CCCCCCCC(=O)O

2꞉16 Δ9,13ω3,7

\(\Delta9,14-16:2 \atop \omega2,7-16:2\)

C/C=C\CCC/C=C\CCCCCCCC(=O)O

2꞉16 Δ9,14ω2,7

\(\Delta9,12-17:2 \atop \omega5,8-17:2\)

CCCC/C=C\C/C=C\CCCCCCCC(=O)O

2꞉17 Δ9,12ω5,8

\(\Delta5,8-18:2 \atop \omega10,13-18:2\)

CCCCCCCCC/C=C\C/C=C\CCCC(=O)O

2꞉18 Δ5,8ω10,13

\(\Delta5,9-18:2 \atop \omega9,13-18:2\)

CCCCCCCC/C=C\CC/C=C\CCCC(=O)O

2꞉18 Δ5,9ω9,13

\(\Delta8,9-18:2 \atop \omega9,10-18:2\)

CCCCCCCC/C=C=C\CCCCCCC(=O)O

2꞉18 Δ8,9ω9,10

\(\Delta9,10-18:2 \atop \omega8,9-18:2\)

CCCCCCC/C=C=C\CCCCCCCC(=O)O

2꞉18 Δ9,10ω8,9

\(\Delta9,11-18:2 \atop \omega7,9-18:2\)

CCCCCC/C=C\C=C/CCCCCCCC(=O)O

2꞉18 Δ9,11ω7,9

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

CCCCC/C=C\C/C=C\CCCCCCCC(=O)O

2꞉18 Δ9,12ω6,9

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

CCCC/C=C\CC/C=C\CCCCCCCC(=O)O

2꞉18 Δ9,13ω5,9

\(\Delta9,14-18:2 \atop \omega4,9-18:2\)

CCC/C=C\CCC/C=C\CCCCCCCC(=O)O

2꞉18 Δ9,14ω4,9

\(\Delta9,15-18:2 \atop \omega3,9-18:2\)

CC/C=C\CCCC/C=C\CCCCCCCC(=O)O

2꞉18 Δ9,15ω3,9

\(\Delta9,17-18:2 \atop \omega1,9-18:2\)

C=C\CCCCCC/C=C\CCCCCCCC(=O)O

2꞉18 Δ9,17ω1,9

\(\Delta14,17-18:2 \atop \omega1,4-18:2\)

C=C\C/C=C\CCCCCCCCCCCCC(=O)O

2꞉18 Δ14,17ω1,4

\(\Delta10,13-19:2 \atop \omega6,9-19:2\)

CCCCC/C=C\C/C=C\CCCCCCCCC(=O)O

2꞉19 Δ10,13ω6,9

\(\Delta11,14-20:2 \atop \omega6,9-20:2\)

CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)O

2꞉20 Δ11,14ω6,9

Tri
Таблица 2. Tri

ID

SMILES

SVG

\(\Delta9,12,15-16:3 \atop \omega1,4,7-16:3\)

C=C\C/C=C\C/C=C\CCCCCCCC(=O)O

3꞉16 Δ9,12,15

\(\Delta9,12,15-17:3 \atop \omega2,5,8-17:3\)

C/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O

3꞉17 Δ9,12,15

\(\Delta9,12,15-18:3 \atop \omega3,6,9-18:3\)

CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O

3꞉18 Δ9,12,15

\(\Delta9,13,16-18:3 \atop \omega2,5,9-18:3\)

C/C=C\C/C=C\CC/C=C\CCCCCCCC(=O)O

3꞉18 Δ9,13,16

Compare
Таблица 3. Compare

ID

FROM

TO

\(\Delta9,12-16:2\)

2꞉16 Δ9,12ω4,7

3꞉16 Δ9,12,15

\(\Delta9,12-17:2\)

2꞉17 Δ9,12ω5,8

3꞉17 Δ9,12,15

\(\Delta9,12-18:2\)

2꞉18 Δ9,12ω6,9

3꞉18 Δ9,12,15

\(\Delta9,13-18:2\)

2꞉18 Δ9,13ω5,9

3꞉18 Δ9,13,16

Molecular mechanics force fields

  • @B97XD

  • B3LYP-D3

  • B3PW91

  • B3PW91-D3

  • B97-D3

  • M06-2X

  • MMFF94

  • MP2

  • PBE1PBE

  • PBE1PBE-D3

Interatomic distances

Необходимые и достаточные условия формирования третьей двойной связи для ряда из 20 жирных кислот
  1. Длина углеродной цепи от карбоксильного конца до ближайшей двойной связи должна быть больше 9 \(\mathring A\) и меньше 13 \(\mathring A\)

    • \(\Delta7,10-16:2\) - 9 3 7.5

    • \(\Delta8,11-17:2\) [?] 10.5 3 7.5

    • \(\Delta9,12-18:2\) + 12 3 7.5

    • \(\Delta10,13-19:2\) - 13.5 3 7.5

  2. Длина углеродной цепи между двойными связями должна быть больше 1? \(\mathring A\) и меньше 5 \(\mathring A\)

    • \(\Delta9,11-18:2\) ? 12 1.5 9

    • \(\Delta9,11-17:2\) ? 12 1.5 7.5

    • \(\Delta9,11-16:2\) ? 12 1.5 6

    • \(\Delta9,11-15:2\) [?] 12 1.5 4.5

    • \(\Delta9,12-16:2\) + 12 3 4.5

    • \(\Delta9,13-17:2\) ? 12 4.5 4.5

    • \(\Delta9,14-18:2\) - 12 6 4.5

  3. Длина углеродной цепи от метильного конца до ближайшей двойной связи должна быть больше 4 \(\mathring A\)

    • \(\Delta9,13-16:2\) 12.1671 4.5504 3.0176

    • \(\Delta9,13-16:2\) 12.1671 4.5504 3.0176

Таблица 4. Interatomic distances

ID

\(\widehat{\Delta \alpha'}\), \(\mathring A\)

\(\widehat{\alpha' \beta'}\), \(\mathring A\)

\(\widehat{\beta' \omega}\), \(\mathring A\)

\(\Delta9,12-14:2 \atop \omega2,5-14:2\)

12.182

3.0024

1.4930

\(\Delta6,9-16:2 \atop \omega7,10-16:2\)

7.5855

2.9962

9.1302

\(\Delta7,10-16:2 \atop \omega6,9-16:2\)

9.1134

2.9974

7.6074

\(\Delta8,10-16:2 \atop \omega6,8-16:2\)

10.6614

1.4426

7.6113

\(\Delta9,12-16:2 \atop \omega4,7-16:2\)

12.1794

3.0031

4.5488

\(\Delta9,13-16:2 \atop \omega3,7-16:2\)

12.1671

4.5504

3.0176

\(\Delta9,14-16:2 \atop \omega2,7-16:2\)

12.166

6.0676

1.4958

\(\Delta9,12-17:2 \atop \omega5,8-17:2\)

12.1758

3.0011

6.0787

\(\Delta5,8-18:2 \atop \omega10,13-18:2\)

6,0556

2,9899

4.5698

\(\Delta5,9-18:2 \atop \omega9,13-18:2\)

6.0494

4.5435

12.1666

\(\Delta8,9-18:2 \atop \omega9,10-18:2\)

10.6535

0.0

12.1998

\(\Delta9,10-18:2 \atop \omega8,9-18:2\)

12.2042

0.0

10.6862

\(\Delta9,11-18:2 \atop \omega7,9-18:2\)

12.1908

1.4427

9.1416

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

12.1738

2.9956

7.6053

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

12.1555

4.544

6.0647

\(\Delta9,14-18:2 \atop \omega4,9-18:2\)

12.148

6.0665

4.5439

\(\Delta9,15-18:2 \atop \omega3,9-18:2\)

12.1731

7.599

3.0212

\(\Delta9,17-18:2 \atop \omega1,9-18:2\)

12.1657

10.6395

0.0

\(\Delta14,17-18:2 \atop \omega1,4-18:2\)

19.8034

2.9993

0.0

\(\Delta10,13-19:2 \atop \omega6,9-19:2\)

13.7024

2.9899

7.6017

\(\Delta11,14-20:2 \atop \omega6,9-20:2\)

15.2436

2.9804

7.6029

Где
\(\widehat{\Delta \alpha'}\)

длина углеродной цепи от карбоксильного конца до ближайшей двойной связи.

\(\widehat{\alpha' \beta'}\)

длина углеродной цепи между двойными связями.

\(\widehat{\beta' \omega}\)

длина углеродной цепи от метильного конца до ближайшей двойной связи.

Детали
Таблица 5. Interatomic distances

ID

\(\overline{\Delta \alpha'}\), \(\mathring A\)

\(\overline{\Delta \beta'}\), \(\mathring A\)

\(\overline{\alpha' \omega}\), \(\mathring A\)

\(\overline{\beta' \omega}\), \(\mathring A\)

\(\overline{\Delta \omega}\), \(\mathring A\)

\(\Delta9,12-14:2 \atop \omega2,5-14:2\)

9.1715

11.3547

5.4483

1.4930

12.1432

\(\Delta6,9-16:2 \atop \omega7,10-16:2\)

6.3015

9.2967

10.4333

7.5109

10.8968

\(\Delta7,10-16:2 \atop \omega6,9-16:2\)

6.7190

10.4135

9.3509

5.3426

13.7622

\(\Delta8,10-16:2 \atop \omega6,8-16:2\)

8.8350

11.4541

7.8885

6.3289

13.8574

\(\Delta9,12-16:2 \atop \omega4,7-16:2\)

10.0358

14.3915

7.0650

3.8456

15.1754

\(\Delta9,13-16:2 \atop \omega3,7-16:2\)

9.9856

15.3212

6.7819

2.4854

16.3583

\(\Delta9,14-16:2 \atop \omega2,7-16:2\)

9.9767

15.1680

5.5038

1.4958

15.0571

\(\Delta9,12-17:2 \atop \omega5,8-17:2\)

9.1409

11.3410

8.2550

4.4526

12.0280

\(\Delta5,9-18:2 \atop \omega9,13-18:2\)

4.3625

9.0521

13.9848

9.9758

17.7246

\(\Delta8,9-18:2 \atop \omega9,10-18:2\)

8.8254

10.2927

11.4290

10.0657

19.6724

\(\Delta9,10-18:2 \atop \omega8,9-18:2\)

10.0813

11.4721

8.7025

7.8897

18.7793

\(\Delta9,11-18:2 \atop \omega7,9-18:2\)

10.0414

12.0676

8.8317

7.5278

12.7803

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

9.1463

11.3315

9.3157

6.3268

10.1050

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

9.9650

15.2865

9.4037

4.9566

18.4730

\(\Delta9,14-18:2 \atop \omega4,9-18:2\)

9.9502

15.2249

9.4248

3.8407

18.3630

\(\Delta9,15-18:2 \atop \omega3,9-18:2\)

9.9981

10.5597

6.3750

2.4908

8.6319

\(\Delta9,17-18:2 \atop \omega1,9-18:2\)

9.9822

15.9524

10.4352

0.0

15.9524

\(\Delta14,17-18:2 \atop \omega1,4-18:2\)

14.6817

16.0950

4.7524

0.0

16.0950

\(\Delta10,13-19:2 \atop \omega6,9-19:2\)

10.2329

12.5203

9.3171

6.3186

11.4052

\(\Delta11,14-20:2 \atop \omega6,9-20:2\)

11.5861

13.5766

9.2946

6.3168

11.8228

\(\widehat{\Delta \alpha'}\):

14-Δ9,12ω2,5 = 1.5016 + 1.5297 + 1.5322 + 1.5303 + 1.5287 + 1.5293 + 1.5253 + 1.5049 = 12.182
16-Δ6,9ω7,10 = 1.4995 + 1.5284 + 1.5259 + 1.5275 + 1.5042 = 7.5855
16-Δ7,10ω6,9 = 1.5016 + 1.5314 + 1.5294 + 1.5238 + 1.5247 + 1.5025 = 9.1134
16-Δ8,10ω6,8 = 1.5054 + 1.5332 + 1.5293 + 1.5316 + 1.5298 + 1.5271 + 1.5050 = 10.6614
16-Δ9,12ω4,7 = 1.5035 + 1.5282 + 1.5286 + 1.5282 + 1.5287 + 1.5294 + 1.5270 + 1.5058 = 12.1794
16-Δ9,13ω3,7 = 1.4974 + 1.5288 + 1.5247 + 1.5277 + 1.5265 + 1.5278 + 1.5287 + 1.5055 = 12.1671
16-Δ9,14ω2,7 = 1.5010 + 1.5266 + 1.5252 + 1.5286 + 1.5275 + 1.5279 + 1.5259 + 1.5033 = 12.166
17-Δ9,12ω5,8 = 1.5036 + 1.5343 + 1.5288 + 1.5287 + 1.5267 + 1.5249 + 1.5254 + 1.5034 = 12.1758
18-Δ5,8ω10,13 = 1.4986 + 1.5299 + 1.5289 + 1.4982 = 6,0556
18-Δ5,9ω9,13 = 1.4950 + 1.5276 + 1.5274 + 1.4994 = 6.0494
18-Δ8,9ω9,10 = 1.5005 + 1.5284 + 1.5282 + 1.5312 + 1.5290 + 1.5291 + 1.5071 = 10.6535
18-Δ9,10ω8,9 = 1.5006 + 1.5320 + 1.5324 + 1.5334 + 1.5351 + 1.5325 + 1.5307 + 1.5075 = 12.2042
18-Δ9,11ω7,9 = 1.5057 + 1.5313 + 1.5296 + 1.5303 + 1.5304 + 1.5296 + 1.5280 + 1.5059 = 12.1908
18-Δ9,12ω6,9 = 1.5043 + 1.5343 + 1.5297 + 1.5259 + 1.5267 + 1.5252 + 1.5249 + 1.5028 = 12.1738
18-Δ9,13ω5,9 = 1.4943 + 1.5237 + 1.5217 + 1.5270 + 1.5273 + 1.5291 + 1.5267 + 1.5057 = 12.1555
18-Δ9,14ω4,9 = 1.4968 + 1.5249 + 1.5221 + 1.5250 + 1.5252 + 1.5261 + 1.5244 + 1.5035 = 12.148
18-Δ9,15ω3,9 = 1.5025 + 1.5256 + 1.5284 + 1.5289 + 1.5278 + 1.5288 + 1.5257 + 1.5054 = 12.1731
18-Δ9,17ω1,9 = 1.5023 + 1.5255 + 1.5259 + 1.5290 + 1.5257 + 1.5285 + 1.5249 + 1.5039 = 12.1657
18-Δ14,17ω1,4 = 1.4977 + 1.5307 + 1.5246 + 1.5325 + 1.5278 + 1.5286 + 1.5221 + 1.5277 + 1.5252 + 1.5287 + 1.5272 + 1.5260 + 1.5046 = 19.8034
19-Δ10,13ω6,9 = 1.5053 + 1.5341 + 1.5290 + 1.5250 + 1.5255 + 1.5273 + 1.5288 + 1.5290 + 1.4984 = 13.7024
20-Δ11,14ω6,9 = 1.5031 + 1.5366 + 1.5270 + 1.5246 + 1.5273 + 1.5280 + 1.5315 + 1.5288 + 1.5329 + 1.5038 = 15.2436

\(\widehat{\alpha' \beta'}\):

14-Δ9,12ω2,5 = 1.5003 + 1.5021 = 3,0024
16-Δ6,9ω7,10 = 1.4972 + 1.4993 = 2,9962
16-Δ7,10ω6,9 = 1.4986 + 1.4988 = 2,9974
16-Δ8,10ω6,8 = 1.4426
16-Δ9,12ω4,7 = 1.5028 + 1.5003 = 3,0031
16-Δ9,13ω3,7 = 1.5079 + 1.5369 + 1.5056 = 4,5504
16-Δ9,14ω2,7 = 1.5010 + 1.5329 + 1.5318 + 1.5019 = 6,0676
17-Δ9,12ω5,8 = 1.4993 + 1.5018 = 3,0011
18-Δ5,8ω10,13 = 1.5012 + 1.4887 = 2.9899
18-Δ5,9ω9,13 = 1.5070 + 1.5311 + 1.5054 = 4,5435
18-Δ8,9ω9,10 = 0.0
18-Δ9,10ω8,9 = 0.0
18-Δ9,11ω7,9 = 1.4427
18-Δ9,12ω6,9 = 1.4965 + 1.4991 = 2,9956
18-Δ9,13ω5,9 = 1.5078 + 1.5321 + 1.5041 = 4,544
18-Δ9,14ω4,9 = 1.5027 + 1.5325 + 1.5304 + 1.5009 = 6,0665
18-Δ9,15ω3,9 = 1.5044 + 1.5352 + 1.5307 + 1.5280 + 1.5007 = 7,599
18-Δ9,17ω1,9 = 1.4995 + 1.5295 + 1.5274 + 1.5291 + 1.5255 + 1.5263 + 1.5022 = 10,6395
18-Δ14,17ω1,4 = 1.4987 + 1.5006 = 2,9993
19-Δ10,13ω6,9 = 1.4904 + 1.4995 = 2,9899
20-Δ11,14ω6,9 = 1.4848 + 1.4956 = 2,9804

\(\widehat{\beta' \omega}\):

14-Δ9,12ω2,5 = 1.4930
16-Δ6,9ω7,10 = 1.5205 + 1.5272 + 1.5289 + 1.5267 + 1.5280 + 1.4989 = 9.1302
16-Δ7,10ω6,9 = 1.5204 + 1.5241 + 1.5294 + 1.5316 + 1.5019 = 7.6074
16-Δ8,10ω6,8 = 1.5197 + 1.5291 + 1.5282 + 1.5306 + 1.5037 = 7.6113
16-Δ9,12ω4,7 = 1.5192 + 1.5277 + 1.5019 = 4.5488
16-Δ9,13ω3,7 = 1.5196 + 1.4980 = 3.0176
16-Δ9,14ω2,7 = 1.4958
17-Δ9,12ω5,8 = 1.5192 + 1.5314 + 1.5297 + 1.4984 = 6.0787
18-Δ5,8ω10,13 = 1.5278 + 1.5362 + 1.5058 = 4.5698
18-Δ5,9ω9,13 = 1.5205 + 1.5279 + 1.5280 + 1.5272 + 1.5263 + 1.5205 + 1.5249 + 1.4913 = 12.1666
18-Δ8,9ω9,10 = 1.5217 + 1.5300 + 1.5315 + 1.5309 + 1.5309 + 1.5284 + 1.5265 + 1.4999 = 12.1998
18-Δ9,10ω8,9 = 1.5222 + 1.5305 + 1.5331 + 1.5324 + 1.5351 + 1.5322 + 1.5007 = 10.6862
18-Δ9,11ω7,9 = 1.5211 + 1.5283 + 1.5307 + 1.5282 + 1.5305 + 1.5028 = 9.1416
18-Δ9,12ω6,9 = 1.5198 + 1.5284 + 1.5266 + 1.5285 + 1.5020 = 7.6053
18-Δ9,13ω5,9 = 1.5198 + 1.5237 + 1.5275 + 1.4937 = 6.0647
18-Δ9,14ω4,9 = 1.5199 + 1.5256 + 1.4984 = 4.5439
18-Δ9,15ω3,9 = 1.5206 + 1.5006 = 3.0212
18-Δ9,17ω1,9 = 0.0
18-Δ14,17ω1,4 = 0.0
19-Δ10,13ω6,9 = 1.5200 + 1.5270 + 1.5261 + 1.5294 + 1.4992 = 7.6017
20-Δ11,14ω6,9 = 1.5212 + 1.5289 + 1.5278 + 1.5300 + 1.4950 = 7.6029

\(\overline{\Delta \alpha'} = max ... max_\omega + 1\)

\(\overline{\Delta \beta'} = max ... min_\omega\)

\(\overline{\alpha' \omega} = max_\omega + 1 ... min\)

\(\overline{\beta' \omega} = min_\omega ... min\)

\(\overline{\Delta \omega} = max ... min\)

Bond angles

Детали
Таблица 6. Bond angles

Angle

\(\Delta9,12-14:2\) \(\omega2,5-14:2\)

\(\Delta6,9-16:2\) \(\omega7,10-16:2\)

\(\Delta7,10-16:2\) \(\omega6,9-16:2\)

\(\Delta8,10-16:2\) \(\omega6,8-16:2\)

\(\Delta9,12-16:2\) \(\omega4,7-16:2\)

\(\Delta9,13-16:2\) \(\omega3,7-16:2\)

\(\Delta9,14-16:2\) \(\omega2,7-16:2\)

\(\Delta9,12-17:2\) \(\omega5,8-17:2\)

\(\Delta5,9-18:2\) \(\omega9,13-18:2\)

\(\Delta8,9-18:2\) \(\omega9,10-18:2\)

\(\Delta9,10-18:2\) \(\omega8,9-18:2\)

\(\Delta9,11-18:2\) \(\omega7,9-18:2\)

\(\Delta9,12-18:2\) \(\omega6,9-18:2\)

\(\Delta9,13-18:2\) \(\omega5,9-18:2\)

\(\Delta9,14-18:2\) \(\omega4,9-18:2\)

\(\Delta9,15-18:2\) \(\omega3,9-18:2\)

\(\Delta9,17-18:2\) \(\omega1,9-18:2\)

\(\Delta14,17-18:2\) \(\omega1,4-18:2\)

\(\Delta10,13-19:2\) \(\omega6,9-19:2\)

\(\Delta11,14-20:2\) \(\omega6,9-20:2\)

\(\angle 1~2~3\)

127.061

111.310

110.320

111.522

111.620

110.903

127.980

111.656

111.308

111.596

111.626

111.456

111.291

110.996

110.607

111.067

124.033

124.004

111.267

111.487

\(\angle 2~3~4\)

127.850

111.518

112.139

111.042

110.658

126.454

127.231

112.554

111.452

111.702

111.993

111.580

111.140

111.815

111.581

126.485

110.862

110.295

111.309

111.660

\(\angle 3~4~5\)

110.668

110.851

111.775

111.817

126.122

126.257

111.312

112.879

111.197

111.469

111.320

110.984

111.194

108.305

126.943

125.670

111.258

126.336

111.193

111.331

\(\angle 4~5~6\)

125.528

111.558

111.538

110.065

126.428

112.551

112.556

126.186

110.960

111.607

111.965

111.933

110.749

125.830

127.103

113.673

111.241

124.539

110.261

109.592

\(\angle 5~6~7\)

123.805

109.966

125.370

126.946

111.004

111.284

111.093

126.188

110.694

111.117

113.281

110.184

125.725

127.183

112.213

115.223

110.292

111.325

125.252

124.305

\(\angle 6~7~8\)

112.345

125.228

125.820

125.240

125.432

127.157

126.760

110.654

111.479

111.456

112.886

126.948

126.163

110.578

114.779

113.764

112.149

112.579

125.437

124.647

\(\angle 7~8~9\)

112.970

125.726

109.439

125.387

124.841

126.240

126.960

125.567

107.537

110.601

124.297

125.234

111.172

110.191

111.439

109.484

109.218

113.282

110.084

109.462

\(\angle 8~9~10\)

112.933

110.385

125.652

126.985

111.206

109.408

108.716

125.529

125.040

122.787

179.271

125.398

125.481

126.846

127.337

126.196

125.913

112.762

124.761

124.241

\(\angle 9~10~11\)

111.985

125.702

125.530

110.657

111.657

111.524

112.069

113.803

126.935

174.587

124.187

127.411

125.515

125.448

126.808

127.019

125.898

111.948

124.393

123.533

\(\angle 10~11~12\)

110.387

125.074

111.287

112.024

110.664

110.310

110.260

112.892

109.994

122.581

111.429

110.129

113.816

108.336

108.450

109.663

109.231

111.724

112.756

111.789

\(\angle 11~12~13\)

111.903

110.128

111.899

111.164

111.742

111.348

111.562

111.015

109.835

110.624

111.734

111.661

112.948

111.487

111.422

112.115

112.232

110.330

112.705

112.040

\(\angle 12~13~14\)

110.986

111.186

111.637

111.314

110.805

110.569

110.917

110.738

127.178

111.549

111.726

111.195

110.917

110.466

110.049

110.431

110.088

110.891

110.961

110.897

\(\angle 13~14~15\)

111.648

110.473

111.738

111.870

111.671

111.598

110.873

125.451

111.215

111.955

111.517

110.703

111.112

111.200

111.669

111.755

111.402

110.591

110.717

\(\angle 14~15~16\)

111.054

111.158

111.155

111.317

111.087

111.050

111.337

109.685

111.093

111.441

111.181

110.948

110.958

110.610

110.717

110.811

110.689

111.220

111.111

\(\angle 15~16~17\)

110.952

112.912

112.283

112.813

111.802

111.353

112.029

111.342

111.651

111.488

111.887

110.936

111.370

\(\angle 16~17~18\)

111.389

111.059

111.012

111.166

111.052

110.886

111.001

111.120

111.218

110.891

111.777

111.301

\(\angle 17~18~19\)

111.120

112.381

\(\angle 18~19~20\)

111.287

Torsion angles

Таблица 7. Torsion angles

ID

\(\angle 1~2~3~4\)

\(\angle 2~3~4~5\)

\(\angle 3~4~5~6\)

\(\angle 4~5~6~7\)

\(\angle 5~6~7~8\)

\(\angle 6~7~8~9\)

\(\angle 7~8~9~10\)

\(\angle 8~9~10~11\)

\(\angle 9~10~11~12\)

\(\angle 10~11~12~13\)

\(\angle 11~12~13~14\)

\(\angle 12~13~14~15\)

\(\angle 13~14~15~16\)

\(\angle 14~15~16~17\)

\(\angle 15~16~17~18\)

\(\angle 16~17~18~19\)

\(\angle 17~18~19~20\)

\(\Delta9,12-14:2 \atop \omega2,5-14:2\)

-0.081

118.569

94.671

-0.751

-178.107

-179.739

61.510

178.315

178.859

179.932

178.896

\(\Delta6,9-16:2 \atop \omega7,10-16:2\)

-179.871

178.983

-179.296

-178.200

91.097

0.365

123.757

123.637

0.496

90.341

-178.043

179.997

177.515

\(\Delta7,10-16:2 \atop \omega6,9-16:2\)

-179.301

178.869

62.271

86.290

2.364

123.852

124.222

2.613

86.296

62.475

179.727

-179.874

178.042

\(\Delta8,10-16:2 \atop \omega6,8-16:2\)

179.717

178.955

-179.844

91.008

4.687

-150.309

6.872

147.394

-179.268

-178.627

179.676

179.284

178.561

\(\Delta9,12-16:2 \atop \omega4,7-16:2\)

-179.238

90.583

-0.334

120.558

152.373

2.117

-178.251

-178.438

-179.970

-179.954

-179.959

179.416

178.238

\(\Delta9,13-16:2 \atop \omega3,7-16:2\)

122.348

-2.412

-172.482

63.686

122.624

5.317

151.397

-178.229

-179.349

179.886

-179.981

179.498

177.831

\(\Delta9,14-16:2 \atop \omega2,7-16:2\)

0.238

120.318

-177.456

61.436

91.580

4.251

122.634

-177.278

-179.513

179.820

179.882

179.092

178.688

\(\Delta9,12-17:2 \atop \omega5,8-17:2\)

178.685

60.563

88.219

-0.251

124.453

127.823

2.541

64.875

56.638

-174.853

-179.100

178.807

-179.658

178.404

\(\Delta5,9-18:2 \atop \omega9,13-18:2\)

-179.791

179.547

-179.709

179.342

-179.218

-179.014

90.700

7.319

120.718

64.825

119.499

7.675

88.745

59.688

178.071

\(\Delta8,9-18:2 \atop \omega9,10-18:2\)

-179.925

179.689

-179.833

179.664

179.798

-178.260

91.172

36.981

40.428

91.867

-178.559

179.815

179.491

179.452

178.072

\(\Delta9,10-18:2 \atop \omega8,9-18:2\)

-179.847

179.646

179.343

179.536

61.704

-119.262

-96.117

-49.629

89.324

-179.480

179.670

179.890

179.995

179.368

178.227

\(\Delta9,11-18:2 \atop \omega7,9-18:2\)

-179.921

179.237

179.400

-179.706

92.001

3.837

-146.114

5.560

120.288

-179.054

-179.716

179.781

-179.977

179.103

178.239

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

179.102

-178.910

-179.030

90.609

-1.429

124.939

128.365

2.559

64.847

57.008

-174.839

-178.777

178.817

-179.832

178.400

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

-179.862

179.545

91.263

5.492

120.173

62.636

119.011

9.179

150.222

-177.879

-179.588

179.732

-179.917

179.208

178.335

\(\Delta9,14-18:2 \atop \omega4,9-18:2\)

179.768

-113.224

2.681

122.358

60.940

60.620

124.355

5.526

121.904

-176.042

-178.926

179.283

-179.751

178.829

178.854

\(\Delta9,15-18:2 \atop \omega3,9-18:2\)

122.585

-0.697

-173.419

60.049

62.343

-175.704

94.471

1.446

123.632

-177.018

-179.234

179.759

179.956

179.203

178.722

\(\Delta9,17-18:2 \atop \omega1,9-18:2\)

119.787

179.881

-179.600

179.625

179.593

-178.193

97.773

0.721

97.582

-178.099

179.657

179.561

-179.974

178.801

178.872

\(\Delta14,17-18:2 \atop \omega1,4-18:2\)

118.998

121.215

1.928

179.924

-179.837

61.663

179.518

61.117

179.733

178.683

-179.465

-179.744

179.728

179.470

178.001

\(\Delta10,13-19:2 \atop \omega6,9-19:2\)

179.374

-179.409

-179.670

91.024

-0.457

123.529

124.960

4.938

63.131

56.841

-176.050

-178.867

179.255

-179.453

178.964

178.434

\(\Delta11,14-20:2 \atop \omega6,9-20:2\)

179.569

-179.933

179.940

91.807

0.313

122.732

122.078

6.603

61.370

57.466

-176.874

-179.107

179.391

-179.454

179.868

179.162

177.80

Детали
Таблица 8. Torsion angles

Angle

\(\Delta9,12-14:2 \atop \omega2,5-14:2\)

\(\Delta6,9-16:2 \atop \omega7,10-16:2\)

\(\Delta7,10-16:2 \atop \omega6,9-16:2\)

\(\Delta8,10-16:2 \atop \omega6,8-16:2\)

\(\Delta9,12-16:2 \atop \omega4,7-16:2\)

\(\Delta9,13-16:2 \atop \omega3,7-16:2\)

\(\Delta9,14-16:2 \atop \omega2,7-16:2\)

\(\Delta9,12-17:2 \atop \omega5,8-17:2\)

\(\Delta5,9-18:2 \atop \omega9,13-18:2\)

\(\Delta8,9-18:2 \atop \omega9,10-18:2\)

\(\Delta9,10-18:2 \atop \omega8,9-18:2\)

\(\Delta9,11-18:2 \atop \omega7,9-18:2\)

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

\(\Delta9,14-18:2 \atop \omega4,9-18:2\)

\(\Delta9,15-18:2 \atop \omega3,9-18:2\)

\(\Delta9,17-18:2 \atop \omega1,9-18:2\)

\(\Delta14,17-18:2 \atop \omega1,4-18:2\)

\(\Delta10,13-19:2 \atop \omega6,9-19:2\)

\(\Delta11,14-20:2 \atop \omega6,9-20:2\)

\(\angle 1~2~3~4\)

-0.081

-179.871

-179.301

179.717

-179.238

122.348

0.238

178.685

-179.791

-179.925

-179.847

-179.921

179.102

-179.862

179.768

122.585

119.787

118.998

179.374

179.569

\(\angle 2~3~4~5\)

118.569

178.983

178.869

178.955

90.583

-2.412

120.318

60.563

179.547

179.689

179.646

179.237

-178.910

179.545

-113.224

-0.697

179.881

121.215

-179.409

-179.933

\(\angle 3~4~5~6\)

94.671

-179.296

62.271

-179.844

-0.334

-172.482

-177.456

88.219

-179.709

-179.833

179.343

179.400

-179.030

91.263

2.681

-173.419

-179.600

1.928

-179.670

179.940

\(\angle 4~5~6~7\)

-0.751

-178.200

86.290

91.008

120.558

63.686

61.436

-0.251

179.342

179.664

179.536

-179.706

90.609

5.492

122.358

60.049

179.625

179.924

91.024

91.807

\(\angle 5~6~7~8\)

-178.107

91.097

2.364

4.687

152.373

122.624

91.580

124.453

-179.218

179.798

61.704

92.001

-1.429

120.173

60.940

62.343

179.593

-179.837

-0.457

0.313

\(\angle 6~7~8~9\)

-179.739

0.365

123.852

-150.309

2.117

5.317

4.251

127.823

-179.014

-178.260

-119.262

3.837

124.939

62.636

60.620

-175.704

-178.193

61.663

123.529

122.732

\(\angle 7~8~9~10\)

61.510

123.757

124.222

6.872

-178.251

151.397

122.634

2.541

90.700

91.172

-96.117

-146.114

128.365

119.011

124.355

94.471

97.773

179.518

124.960

122.078

\(\angle 8~9~10~11\)

178.315

123.637

2.613

147.394

-178.438

-178.229

-177.278

64.875

7.319

36.981

-49.629

5.560

2.559

9.179

5.526

1.446

0.721

61.117

4.938

6.603

\(\angle 9~10~11~12\)

178.859

0.496

86.296

-179.268

-179.970

-179.349

-179.513

56.638

120.718

40.428

89.324

120.288

64.847

150.222

121.904

123.632

97.582

179.733

63.131

61.370

\(\angle 10~11~12~13\)

179.932

90.341

62.475

-178.627

-179.954

179.886

179.820

-174.853

64.825

91.867

-179.480

-179.054

57.008

-177.879

-176.042

-177.018

-178.099

178.683

56.841

57.466

\(\angle 11~12~13~14\)

178.896

-178.043

179.727

179.676

-179.959

-179.981

179.882

-179.100

119.499

-178.559

179.670

-179.716

-174.839

-179.588

-178.926

-179.234

179.657

-179.465

-176.050

-176.874

\(\angle 12~13~14~15\)

179.997

-179.874

179.284

179.416

179.498

179.092

178.807

7.675

179.815

179.890

179.781

-178.777

179.732

179.283

179.759

179.561

-179.744

-178.867

-179.107

\(\angle 13~14~15~16\)

177.515

178.042

178.561

178.238

177.831

178.688

-179.658

88.745

179.491

179.995

-179.977

178.817

-179.917

-179.751

179.956

-179.974

179.728

179.255

179.391

\(\angle 14~15~16~17\)

178.404

59.688

179.452

179.368

179.103

-179.832

179.208

178.829

179.203

178.801

179.470

-179.453

-179.454

\(\angle 15~16~17~18\)

178.071

178.072

178.227

178.239

178.400

178.335

178.854

178.722

178.872

178.001

178.964

179.868

\(\angle 16~17~18~19\)

178.434

179.162

\(\angle 17~18~19~20\)

177.804

Report files

  • \(\Delta9,12-14:2 \atop \omega2,5-14:2\)

  • \(\Delta6,9-16:2 \atop \omega7,10-16:2\)

  • \(\Delta7,10-16:2 \atop \omega6,9-16:2\)

  • \(\Delta8,10-16:2 \atop \omega6,8-16:2\)

  • \(\Delta9,12-16:2 \atop \omega4,7-16:2\)

  • \(\Delta9,13-16:2 \atop \omega3,7-16:2\)

  • \(\Delta9,14-16:2 \atop \omega2,7-16:2\)

  • \(\Delta9,12-17:2 \atop \omega5,8-17:2\)

  • \(\Delta5,9-18:2 \atop \omega9,13-18:2\)

  • \(\Delta8,9-18:2 \atop \omega9,10-18:2\)

  • \(\Delta9,10-18:2 \atop \omega8,9-18:2\)

  • \(\Delta9,11-18:2 \atop \omega7,9-18:2\)

  • \(\Delta9,12-18:2 \atop \omega6,9-18:2\)

  • \(\Delta9,13-18:2 \atop \omega5,9-18:2\)

  • \(\Delta9,14-18:2 \atop \omega4,9-18:2\)

  • \(\Delta9,15-18:2 \atop \omega3,9-18:2\)

  • \(\Delta9,17-18:2 \atop \omega1,9-18:2\)

  • \(\Delta14,17-18:2 \atop \omega1,4-18:2\)

  • \(\Delta10,13-19:2 \atop \omega6,9-19:2\)

  • \(\Delta11,14-20:2 \atop \omega6,9-20:2\)

Temp

\(\Delta9,12-18:2 \atop \omega6,9-18:2\)

Детали
Таблица 9. Repeats

179.594

-179.726

-179.856

91.135

0.588

122.679

122.462

5.519

61.664

57.285

-176.595

-179.027

179.175

179.950

177.716

-26.856

154.950

178.992

-178.863

-178.665

90.590

-1.574

125.103

128.408

2.490

64.987

57.023

-174.758

-178.871

178.948

-179.884

178.276

-24.997

157.332

179.329

-179.605

-179.753

91.893

-0.213

123.426

123.134

5.369

61.780

57.709

-176.501

-179.115

179.036

179.813

178.234

-27.407

154.875

179.474

-179.405

-179.406

90.513

-0.086

122.755

123.488

5.046

62.136

57.537

-176.192

-179.251

179.061

179.936

177.850

3.728

-176.288

179.538

-179.505

-179.450

91.029

-0.062

123.397

123.733

5.118

62.266

57.528

-176.195

-179.156

179.084

179.719

177.893

-25.475

156.163

179.354

-179.269

-179.358

90.752

-1.073

124.078

125.735

3.801

63.536

57.135

-175.168

-179.064

178.807

-179.733

177.868

-26.426

155.867

179.516

-179.955

-179.486

91.433

0.278

122.908

122.533

5.404

61.511

57.570

-176.878

-179.208

179.183

179.755

178.233

-27.735

155.015

179.253

-179.547

179.952

90.537

-0.489

122.956

123.894

4.941

62.360

57.246

-175.916

-178.880

178.855

179.641

178.367

-26.935

155.281

179.515

-179.580

-178.398

90.320

0.737

121.207

123.096

1.190

-177.762

-178.061

179.741

-179.935

179.912

179.231

178.411

-26.772

154.987

179.521

-179.807

-179.741

91.475

0.998

122.786

121.636

5.644

61.143

57.671

-177.081

-179.263

179.181

179.842

178.290

-27.685

154.682

179.317

-178.918

-179.037

90.863

-1.702

125.418

128.145

2.300

65.046

56.771

-174.662

-178.972

178.824

-179.567

177.983

-23.677

158.394

178.828

-178.799

-178.737

90.091

-1.544

125.162

128.287

2.190

65.001

56.837

-174.687

-178.911

178.835

-179.682

178.152

-25.212

156.622

179.562

-179.643

-179.645

91.024

0.019

122.623

123.083

5.201

62.136

56.979

-176.198

-178.953

179.165

179.811

178.088

-27.632

154.667

179.808

-179.946

179.984

91.004

1.664

121.828

121.018

6.048

60.678

57.825

-177.132

-179.088

179.322

179.615

178.572

-28.560

154.274

179.432

-179.828

179.993

91.572

-0.518

124.034

123.841

4.743

62.446

57.192

-176.492

-178.726

179.135

179.813

178.355

-27.197

155.772

179.218

-179.310

-179.315

90.916

-0.731

123.743

125.128

4.102

63.188

57.102

-175.525

-179.099

178.950

-179.944

177.994

-24.866

157.214

179.388

-179.243

-179.205

91.451

-0.872

124.421

125.837

3.747

63.677

56.959

-175.376

-178.956

178.846

-179.965

178.006

-25.662

156.246

179.126

-178.779

-179.082

90.544

-1.377

125.133

128.063

2.671

64.825

56.810

-174.752

-178.768

178.537

-179.833

178.537

-23.980

157.621

179.655

-179.626

-179.726

90.941

0.307

122.771

122.128

5.674

61.643

57.425

-176.534

-179.114

179.164

179.919

178.187

-27.294

154.866

179.621

-179.653

-179.804

91.061

0.823

122.721

122.812

5.301

61.630

57.730

-176.963

-179.177

179.285

179.806

178.036

-26.503

155.656

179.344

-179.514

-179.527

91.262

-0.726

123.737

124.296

4.563

62.752

57.159

-176.162

-179.045

179.060

-179.877

177.927

-26.812

155.498

179.442

-179.439

-179.960

91.274

0.249

123.689

123.611

4.687

62.171

57.612

-176.397

-179.076

178.998

179.926

178.054

-27.849

154.494

179.365

-179.011

-179.173

90.840

-0.779

124.153

125.203

4.307

63.117

57.164

-175.541

-179.035

178.874

-179.690

177.953

-26.460

155.577

179.330

-178.989

-179.213

90.773

-1.591

124.244

127.019

2.820

64.603

56.626

-174.625

-178.667

178.859

-179.844

178.151

-25.462

156.278

179.373

-178.993

-179.352

91.094

-1.208

124.267

126.289

3.718

63.358

57.506

-175.840

-179.009

179.011

-179.837

178.273

-25.608

156.471

179.644

-179.750

-179.498

91.097

0.824

122.895

122.324

5.267

61.827

57.207

-176.510

-179.023

179.187

179.800

178.442

-28.134

155.695

179.765

179.973

179.832

91.690

0.611

122.432

121.996

5.659

61.067

58.062

-176.964

-179.272

179.196

179.595

177.990

-27.932

154.590

179.107

-178.730

-178.839

90.628

-1.828

125.144

128.201

2.466

64.957

56.854

-174.789

-178.892

178.918

-179.799

178.149

-25.135

156.767

179.347

-179.459

-179.271

91.578

-0.401

123.979

123.745

4.902

62.552

57.228

-176.356

-179.243

179.141

179.925

177.965

-26.794

155.362

179.409

-179.468

-179.797

91.477

-0.352

123.605

124.246

4.487

62.638

57.284

-175.679

-178.937

178.716

179.663

177.992

-26.468

155.532

178.889

-178.818

-178.654

90.360

-1.636

125.464

128.241

2.604

64.826

56.897

-174.519

-178.802

178.916

-179.700

178.354

-24.968

157.132

179.324

-179.731

-179.842

91.402

1.279

122.687

122.545

5.451

62.071

57.229

-176.372

-179.167

179.164

179.701

178.135

-28.217

154.066

179.024

-178.927

-179.053

90.377

-1.580

124.746

127.922

2.674

64.888

56.858

-174.920

-178.986

178.860

-179.765

178.260

-25.486

156.848

179.470

-179.493

-179.686

90.874

-0.143

122.906

123.964

5.027

62.766

57.336

-176.257

-179.144

179.037

179.663

177.903

-26.788

155.287

179.438

-179.814

-179.702

91.555

0.301

123.123

122.425

5.392

61.615

57.501

-176.748

-179.196

179.130

179.730

178.378

-27.940

154.536

179.128

-178.973

-178.856

90.272

-1.237

124.938

127.352

3.080

64.579

56.693

-174.696

-178.772

178.867

-179.715

178.329

-24.914

157.023

178.996

-179.009

-178.983

90.582

-1.454

125.354

128.401

2.422

64.969

56.876

-174.835

-178.893

178.760

-179.807

178.291

-25.666

156.523

179.269

-179.365

-179.441

91.183

0.042

123.657

124.027

4.728

62.730

57.145

-175.918

-179.078

178.920

-179.960

178.004

-25.864

156.009

179.136

-178.735

-178.893

90.251

-1.415

125.154

128.430

2.540

64.793

56.840

-174.549

-178.818

178.756

-179.587

177.996

-25.096

156.944

179.460

-179.668

-179.678

91.223

-0.259

123.659

123.843

4.422

62.461

57.472

-176.533

-179.004

179.148

179.668

178.096

-26.708

155.567

179.319

-179.296

-179.482

91.509

-1.153

124.542

124.754

4.023

62.894

57.341

-176.026

-179.100

179.020

-179.793

177.916

-26.222

155.683

179.709

179.850

-179.779

91.216

1.585

122.306

121.015

5.770

60.247

58.330

-177.614

-179.066

179.394

179.593

178.634

-27.851

154.527

179.474

-179.640

179.984

91.995

-0.244

123.938

123.441

4.716

62.589

57.180

-175.937

-179.231

179.018

-179.975

177.700

-26.368

155.757

179.610

-179.971

-179.683

90.416

1.783

122.126

122.254

5.569

61.674

57.468

-176.403

-179.209

179.024

179.697

178.162

-27.417

154.974

179.136

-179.391

-179.350

91.277

-0.607

123.937

124.460

4.458

63.048

56.805

-175.717

-179.052

179.167

-179.961

177.908

-25.255

156.544

179.750

179.760

-179.990

91.157

1.140

122.520

121.837

5.667

60.953

57.455

-177.241

-178.926

179.426

179.639

178.510

-27.903

155.135

179.325

-179.181

-179.480

91.146

-0.691

124.053

125.119

4.136

63.265

57.047

-175.620

-178.897

179.078

179.879

177.862

-25.751

156.378

179.441

-179.851

-179.703

91.364

0.273

122.701

123.173

5.247

61.925

57.454

-176.100

-179.135

178.936

-179.919

178.095

-26.496

155.232

179.132

-179.214

-178.889

90.466

-0.907

123.930

125.628

3.457

63.817

56.896

-175.284

-179.137

178.918

-179.793

177.809

-25.927

155.738

179.281

-178.999

-179.007

91.136

-1.476

125.034

126.651

3.125

64.153

56.883

-175.134

-178.999

178.973

-179.827

177.967

-25.704

156.203

179.403

-179.848

-179.993

91.338

-0.168

123.260

123.323

4.888

62.470

57.238

-176.107

-179.080

179.131

-179.954

178.024

-25.858

155.359

179.114

-178.999

-179.495

91.160

-0.801

123.879

124.984

4.096

63.433

56.872

-175.588

-179.063

179.114

-179.781

177.639

3.805

-176.289

179.221

-178.983

-179.088

90.897

-1.516

125.206

128.319

2.548

64.899

56.950

-174.695

-178.981

178.876

-179.760

178.173

-25.071

156.784

179.622

-179.846

-179.891

90.853

0.932

122.616

122.205

5.853

61.355

57.635

-176.738

-179.121

179.123

179.714

177.918

-26.597

155.844

179.422

-179.628

-179.308

91.309

-0.014

123.239

123.218

5.496

61.451

57.483

-176.347

-179.087

179.136

179.853

178.022

-26.859

155.539

179.688

-179.688

-179.528

91.565

-0.240

123.233

122.902

5.588

61.655

57.772

-176.804

-179.364

179.101

179.600

178.298

-27.203

155.186

179.400

-178.818

-179.099

90.709

-1.439

124.744

127.863

2.516

65.093

56.818

-175.027

-179.004

179.032

-179.840

178.066

-25.202

156.909

178.960

-178.857

-178.969

90.615

-1.524

124.837

127.753

2.729

65.073

56.747

-174.968

-178.948

179.176

-179.362

177.690

3.492

-176.663

179.621

-179.697

-179.870

91.000

0.156

122.981

122.920

4.788

62.364

57.373

-176.209

-179.134

179.031

-179.993

177.911

-27.300

154.229

179.640

-179.851

-179.624

91.256

0.592

122.686

122.237

5.615

61.563

57.306

-176.807

-179.082

179.233

179.814

178.244

-27.997

154.348

179.631

-179.855

-179.776

91.245

0.589

122.631

122.271

5.113

61.797

57.808

-176.886

-179.200

179.101

179.722

178.197

-27.585

155.043

178.895

-178.659

-179.117

90.958

-1.160

124.833

126.445

3.389

63.745

56.968

-175.221

-178.957

178.944

-179.837

178.149

-26.909

154.995

179.138

-178.674

-178.985

90.306

-1.540

124.812

128.027

2.509

64.846

56.910

-174.746

-179.031

178.905

-179.933

178.175

-24.180

157.654

179.543

-179.719

-179.445

91.004

-0.105

122.995

123.171

5.456

62.054

57.529

-176.934

-179.046

179.051

179.727

178.286

-27.309

155.168

179.244

-179.263

-179.074

91.125

-0.726

123.861

124.665

4.547

62.793

57.183

-175.883

-178.913

179.010

179.644

178.056

-25.998

155.995

179.740

179.917

-179.407

90.516

2.666

120.756

119.637

6.478

59.454

59.019

-178.850

-179.369

179.703

179.431

179.210

-29.038

154.014

179.075

-178.811

-179.151

90.938

-1.500

125.277

127.919

2.640

64.641

56.907

-174.933

-178.858

178.929

-179.669

178.182

-26.442

155.478

178.840

-178.720

-178.527

90.154

-1.504

125.462

128.703

2.005

64.932

56.979

-174.606

-178.949

178.724

-179.621

178.236

-25.533

156.339

179.004

-178.937

-179.066

90.537

-1.407

124.948

127.662

2.719

64.779

56.867

-174.881

-178.919

178.758

-179.768

178.200

-25.160

156.810

179.694

-179.946

179.865

91.640

0.467

122.763

121.623

5.442

61.199

57.640

-177.125

-179.113

179.394

179.343

177.828

-26.869

155.301

179.491

-179.697

-179.637

91.506

-0.200

122.975

122.311

5.787

60.916

57.721

-176.828

-179.099

179.205

179.645

178.099

-28.902

155.007

179.528

-179.857

-179.649

91.468

0.151

123.409

122.979

5.217

61.340

57.766

-176.657

-179.117

179.081

179.838

177.681

-26.728

154.930

179.796

-179.607

179.995

90.742

0.900

122.631

121.829

5.699

60.781

57.758

-176.890

-179.041

179.415

179.869

178.255

-29.130

153.816

179.670

-179.859

-179.743

91.380

0.747

122.789

121.836

5.579

61.007

57.888

-177.100

-179.314

179.398

179.591

178.427

-27.868

154.777

179.521

-179.540

-179.616

91.393

-0.380

123.259

124.199

4.698

62.575

57.330

-176.182

-179.007

178.916

179.772

178.414

-26.923

155.650

179.696

179.962

-179.882

91.834

0.958

123.131

121.761

5.847

60.828

57.835

-177.320

-179.160

179.224

179.486

178.115

-28.171

154.726

179.037

-178.646

-178.824

90.492

-1.753

125.393

128.900

2.035

65.149

56.993

-174.690

-178.912

178.945

-179.590

178.481

-24.351

157.524

179.191

-178.879

-178.730

90.085

-1.517

124.895

127.933

2.590

64.812

56.893

-174.768

-178.874

178.893

-179.708

178.118

-25.353

156.898

178.958

-178.656

-178.933

90.741

-1.538

125.266

128.419

2.261

65.245

56.918

-174.473

-179.027

178.849

-179.809

178.008

-25.185

156.348

179.065

-179.110

-179.092

91.029

-1.099

124.758

126.445

3.424

64.007

56.840

-175.123

-178.891

178.869

-179.871

178.268

-24.785

157.213

179.029

-178.958

-179.051

90.521

-1.670

124.842

128.288

2.261

64.964

56.878

-174.642

-178.860

178.905

-179.691

178.430

-25.575

156.458

179.416

-179.586

179.797

91.471

0.136

123.090

122.815

5.159

62.088

56.965

-176.204

-178.993

179.113

179.833

178.362

-27.192

155.302

179.773

-179.805

-179.630

91.000

1.747

122.081

120.112

7.271

58.693

58.908

-178.024

-179.225

179.515

179.440

178.620

-28.187

154.649

179.526

-179.744

-179.530

91.421

0.291

123.210

122.668

5.002

61.555

57.543

-176.681

-179.070

179.208

179.748

178.322

-27.994

155.360

179.037

-178.850

-179.061

90.491

-1.415

124.888

127.894

2.918

64.690

56.876

-174.789

-178.813

178.855

-179.600

177.926

-24.931

156.993

179.414

-179.650

-179.771

91.387

-0.085

123.182

122.988

5.205

61.931

57.491

-176.500

-179.181

179.180

179.885

177.938

-26.196

156.834

179.470

-179.545

-179.734

90.803

0.569

122.844

121.392

5.432

61.299

57.655

-177.012

-179.195

179.154

179.648

177.883

-26.120

156.283

179.653

179.930

-179.731

91.096

1.187

122.075

121.147

5.881

60.133

58.433

-177.624

-179.243

179.408

179.588

178.297

-28.672

155.408

179.916

179.935

-179.979

90.421

2.529

120.652

119.432

6.150

59.480

58.934

-178.862

-179.348

179.754

179.619

179.143

-29.059

154.389

179.650

-179.529

-179.380

90.130

1.470

122.076

120.689

5.958

60.384

58.071

-177.406

-179.008

179.311

179.412

178.484

-27.840

154.033

179.315

-179.239

-179.499

90.948

-0.893

123.758

125.106

4.031

63.413

57.245

-175.616

-179.089

179.114

-179.717

177.922

-25.926

156.012

179.524

-179.499

179.884

91.358

-0.143

123.054

123.719

4.727

62.529

57.378

-176.429

-179.346

179.273

-179.951

177.951

-25.725

156.548

179.121

-178.856

-178.939

90.826

-1.545

125.154

127.217

2.609

64.741

56.601

-174.557

-178.873

178.752

-179.910

177.984

-24.631

157.422

179.382

-179.778

-179.566

91.350

0.279

123.064

122.505

5.266

61.880

57.407

-176.588

-179.116

179.225

179.901

178.077

-26.943

155.481

179.724

-179.684

-179.819

90.897

0.747

122.319

122.156

5.084

61.732

57.623

-177.283

-179.235

179.335

179.680

178.256

-27.686

155.125

179.136

-179.100

-179.192

91.674

-1.230

124.789

125.976

3.544

63.688

56.957

-175.170

-178.924

179.042

-179.788

177.642

3.848

-176.301

179.447

-179.374

-179.881

91.695

-0.179

123.777

123.977

4.773

62.295

57.331

-175.821

-179.050

179.041

179.784

177.901

-25.631

156.564

179.061

-178.745

-178.709

90.593

-1.443

125.144

127.786

2.528

65.007

56.903

-174.657

-178.837

178.886

-179.646

178.643

-25.511

156.350

179.388

-179.035

-179.425

91.097

-0.794

124.304

125.630

4.074

63.150

57.204

-175.605

-178.926

178.955

-179.865

178.104

-27.146

154.458

179.720

-179.853

-179.046

90.623

0.995

122.374

121.904

6.051

60.818

57.886

-177.064

-179.082

179.189

179.423

178.275

2.330

-177.969

\(\Delta9,13-18:2 \atop \omega5,9-18:2\)

  • 179.52242 ± 0.55951546823293

  • 179.33906 ± 0.47213901436853

  • 92.29641 ± 1.4039203054808

  • 3.73469 ± 1.3684149106085

  • 126.75495 ± 7.5411047610862

  • 61.94911 ± 4.6493608138836

  • 107.79739 ± 51.254078613936

  • 5.89162 ± 1.2815510235096

  • 150.63788 ± 5.4516919980883